A new method for constructing membership functions and fuzzy rules from training examples

نویسندگان

  • Tzu-Ping Wu
  • Shyi-Ming Chen
چکیده

To extract knowledge from a set of numerical data and build up a rule-based system is an important research topic in knowledge acquisition and expert systems. In recent years, many fuzzy systems that automatically generate fuzzy rules from numerical data have been proposed. In this paper, we propose a new fuzzy learning algorithm based on the alpha-cuts of equivalence relations and the alpha-cuts of fuzzy sets to construct the membership functions of the input variables and the output variables of fuzzy rules and to induce the fuzzy rules from the numerical training data set. Based on the proposed fuzzy learning algorithm, we also implemented a program on a Pentium PC using the MATLAB development tool to deal with the Iris data classification problem. The experimental results show that the proposed fuzzy learning algorithm has a higher average classification ratio and can generate fewer rules than the existing algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of fuzzy rules and membership functions from training examples

Most fuzzy controllers and fuzzy expert systems must predefine membership functions and fuzzy inference rules to map numeric data into linguistic variable terms and to make fuzzy reasoning work. In this paper, we propose a general learning method as a framework for automatically deriving membership functions and fuzzy if-then rules from a set of given training examples to rapidly build a protot...

متن کامل

A Fuzzy Expert System for Predicting the Performance of Switched Reluctance Motor

In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit (IMEC) method has been used to generate the input-output data. These input-output data i...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

A New Highly Controllable and Accurate Algorithm for Defuzzifier Circuit Implementation

Defuzzifier circuit is one of the most important parts of fuzzy logic controllers that determine the output accuracy. The Center Of Gravity method (COG) is one of the most accurate methods that so far been presented for defuzzification. In this paper, a simple algorithm is presented to generate triangular output membership functions in the Mamdani method using the multiplier/divider circuit and...

متن کامل

A new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy

In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 1999